Improving bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes.

نویسندگان

  • Stephen Burgess
  • Simon G Thompson
چکیده

Causal estimates can be obtained by instrumental variable analysis using a two-stage method. However, these can be biased when the instruments are weak. We introduce a Bayesian method, which adjusts for the first-stage residuals in the second-stage regression and has much improved bias and coverage properties. In the continuous outcome case, this adjustment reduces median bias from weak instruments to close to zero. In the binary outcome case, bias from weak instruments is reduced and the estimand is changed from a marginal population-based effect to a conditional effect. The lack of distributional assumptions on the posterior distribution of the causal effect gives a better summary of uncertainty and more accurate coverage levels than methods that rely on the asymptotic distribution of the causal estimate. We discuss these properties in the context of Mendelian randomization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review of instrumental variable estimators for Mendelian randomization

Instrumental variable analysis is an approach for obtaining causal inferences on the effect of an exposure (risk factor) on an outcome from observational data. It has gained in popularity over the past decade with the use of genetic variants as instrumental variables, known as Mendelian randomization. An instrumental variable is associated with the exposure, but not associated with any confound...

متن کامل

Binary Regression With a Misclassified Response Variable in Diabetes Data

Objectives: The categorical data analysis is very important in statistics and medical sciences. When the binary response variable is misclassified, the results of fitting the model will be biased in estimating adjusted odds ratios.  The present study aimed to use a method to detect and correct misclassification error in the response variable of Type 2 Diabetes Mellitus (T2DM), applying binary ...

متن کامل

Lack of Identification in Semiparametric Instrumental Variable Models With Binary Outcomes

A parameter in a statistical model is identified if its value can be uniquely determined from the distribution of the observable data. We consider the context of an instrumental variable analysis with a binary outcome for estimating a causal risk ratio. The semiparametric generalized method of moments and structural mean model frameworks use estimating equations for parameter estimation. In thi...

متن کامل

Avoiding Invalid Instruments and Coping with Weak Instruments

A rchimedes said, “Give me the place to stand, and a lever long enough, and I will move the Earth” (Hirsch, Kett, and Trefil, 2002, p. 476). Economists have their own powerful lever: the instrumental variable estimator. The instrumental variable estimator can avoid the bias that ordinary least squares suffers when an explanatory variable in a regression is correlated with the regression’s distu...

متن کامل

Bias due to participant overlap in two‐sample Mendelian randomization

Mendelian randomization analyses are often performed using summarized data. The causal estimate from a one-sample analysis (in which data are taken from a single data source) with weak instrumental variables is biased in the direction of the observational association between the risk factor and outcome, whereas the estimate from a two-sample analysis (in which data on the risk factor and outcom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics in medicine

دوره 31 15  شماره 

صفحات  -

تاریخ انتشار 2012